Large Transport Aircraft:

Solving control challenges of the future

Thomas Jones
August 2014
Introduction

• Industry / Academia collaboration
 – Plenary, Special panel sessions & Invited session
 – Success story (mutual)

• Accessibility
 – Assuming a diverse audience
 – Diverse technical topics

• Large Transport Aircraft
 – Focus areas with specific example projects in Automation & Control

• Research approach
 – Focus on practical & realisable solutions to complex industry challenges
Content

• Who we are
 – Stellenbosch University
 – ESL within the Dept. of E&E Engineering

• What we do in the ESL

• Focus on Control/Automation of Large Transport Aircraft
 – General functional automation
 – Improving safety
 – Improving efficiency

• Conclusion
Who we are: SU

• Stellenbosch University
 – Founded in 1886, 60km from Cape Town
 – Comprehensive with 4 campuses & 10 Faculties
 – 28 000 students
 – Most effective research University in Africa (NRF)
 – In Top 200 of most international university ratings

• Faculty of Engineering
 – 4 000 students
 – Disciplines:
 • E&E, Mechanical, Mechatronic, Civil, Chemical, Industrial
Who we are: ESL

- Dept. of Electrical and Electronic Engineering: Electronic Systems Laboratory
 - Founded in 1992 as a space systems lab
 - 50 graduate students
 - 12 academic/research/technical staff
 - Strong international industrial and academic ties

- Research focus
 - Automation & Control
 - General
 - Space vehicles
 - Terrestrial and underwater robotics
 - Aeronautics
What we do: Aeronautics

• Focus on Aeronautical Automation & Control
 – Unmanned Aircraft (RW, FW, etc.)
 • The other half... for another day
 – Large Transport Aircraft (LTA)
 • Airbus / dti NAC (50/50) program since 2008
 • First expanded to 4 universities
 • Then successes lead to open project applications for all SA universities on project merit basis
 • Initial “Airbus Central Entity” funding for work with CoCs, then weaned off to CoCs
 • ESL goal: Solving future automation & control challenges for the LTA sector, our niche
 • ESL Projects with Airbus CoCs in 3 countries
LTA Control and Automation

• Primary LTA development drivers
 – Cost
 – Passenger safety & comfort
 – Environmental impact

• Industrial environment
 – Huge multinational organisations
 – Highly competitive
 – Highly regulated (certification)

• Focus on LTA Automation & Control
 – General functional automation
 – Improving safety
 – Improving efficiency
LTA: General Automation

- General functional automation
 - Adding useful operational automation features
 - Strong links to safety & efficiency
- Example: Automated Airborne Refuelling
 - Airborne refuelling of large transport aircraft
 - Range extension without landing
 - Larger cargo component to take-off mass
 - Difficult and strenuous piloting exercise!
Autonomous Refuelling

• Refuelling Process

- Solid boom: 20min & 83 tons of fuel
- Receptacle is above and behind cockpit
- Receptacle is far in front of the CG
Autonomous Refuelling
Autonomous Refuelling

- Refueling Envelope
 - Small disconnect envelope
 - Even smaller connect envelope
 - Relatively slow aircraft dynamics / response
Autonomous Refuelling

• Goals
 – Autonomous receptacle regulation
 – Conditions: Light & Medium turbulence
 – Standard configuration & operational envelope / maneuvers
 – Prefer to operate via FBW
 – High fidelity model

• Approach
 – Improving modelling ⇐ Trust
 – Insightful conventional design ⇐ Benchmark
 – Optimal robust design ⇐ Explore Limits
Autonomous Refuelling

- Improving modelling
 - Remodel from CG to Receptacle
 - Thrust response is critical (longitudinal control)
 - Proximity: Tanker to receiver
 - Trim and AoA effects
 - Proximity: Receiver to tanker
 - Clear reported bow-wave effects
 - Enforce time-scale separation
 - Break tanker-receiver control system coupling (fixed throttle)
Autonomous Refuelling

- Conventional Design (longitudinal)
 - CG to RR: Added zeros
 - Apply imperfect pole-zero cancellation
 - Negligible residual verified
 - Actuators
 - Throttle (low BW)
 - Elevator (high BW)
 - Spoilers (medium BW) deflected trim
 - Basic control architectures attempted
 - Feedback loops
 - LQR
Autonomous Refuelling

- Conventional Design Results

- RR regulation results in increased CG load factors
- RHP zeros not limiting response
- Control BW sufficient via FBW
- Simple tanker control = best performance
Autonomous Refuelling

• Optimal Robust Design
 – Much literature
 • Mainly for smaller receivers
 • Actuation limits not included
 • Control accuracy requirements not in optimisations
 – Maintain the model complexity
 • Inside optimisation, not only for testing
 • Include limits and accuracy requirements
 – Our approach: apply LMI optimisation
Autonomous Refuelling

• LMI Optimisation
 – Formulate closed loop stability & performance as LMIs
 – Absorb control variables into LMI structures
 – Remove resulting non-linearities with substitutions/transformations/shaping
 – Define objective function i.t.o. LMI variables
 – Solve for controller by optimising objective

• Model
 – 60th order norm-bounded SS
 – Includes improved Dryden turbulence model
Autonomous Refuelling

- Controller synthesis
 - Output feedback = simple solution
 - 9 different controller variants
 - No FBW usage = find limits
 - Linear formulation for separation
 - Optimised with SDPT3 in Matlab
LTA: Improving safety

- LMI Optimised Controller Results
Autonomous Refuelling

AAR
Light Turbulence
Straight and Level
LTA: Improving safety

- Improving safety
 - A primary driver \(\Rightarrow \) lucky for us!
 - Huge improvements made over 100 years
- Example: Automatic Return to Envelope
 - Protect aircraft from exiting envelope
 - Bring aircraft back into envelope \(\Leftarrow \) Focus
LTA: Improving safety

- **Goals**
 - Automatic return to envelope function for an LTA
 - Robust, common-sense strategies
 - Maintain safe structural load factors
 - Careful: Don’t trust air data!
 - Test / Validate for LTA
 - Post-stall spin recovery as example

- **Approach**
 - Model
 - Create strategy
 - Test / Validate strategy
LTA: Improving safety

• Model
 – High AoA and Side-slip and Attitude rates
 – Very few good models available
 – Decided on the NASA GTM
 • Twin-turbine LTA
 • Wind tunnel & CFD & Scaled flight testing
 • Extensive flow angles, attitude rates & control deflections
 • Highly non-linear
LTA: Improving safety

• AREF Solution approach
 – Intuitive & Robust to various aircraft
 – Based on recommended piloting practice
 – Recover linear behaviour first (reduce uncertainty)
 – Quickly exploit FBW protection systems

• AREF strategy
 – Step 1: Recover angular rates and aerodynamic envelope
 – Step 2: Recover attitude
 – Step 3: Recover over-speed and altitude
Enter Upset Recovery

Recover Aerodynamic Envelope
- alpha, beta exit envelope
- P, Q, R reduced
- alpha, beta recovered

Recover Attitude Envelope
- bank angle, flight path angle recovered

Obey normal load factor constraints

Recover Overspeed and Altitude
- overspeed, altitude recovered

Normal Flight Control

Recovery Aerodynamic Envelope

Damp Angular Rates
- P, Q, R reduced
- alpha, beta close?

Capture Alpha, Beta
- P, Q, R, alpha, beta recovered?

Recover Attitude
LTA: Improving safety

• Step 1: Aerodynamic recovery
 – Highly non-linear
 – Multiple stable & unstable equilibria outside flight envelope
 – Actuator inputs and initial conditions govern transitions between equilibria
 – We need more understanding!
LTA: Improving safety

• Bifurcation Analysis
 – Solve & track equilibria of non-linear system for various static control deflections
 – Matlab Dynamical Systems Toolbox (Coetzee et al. 2010)
 – Condition GTM to be compatible with toolbox
 – No FBW for analysis
 – Vary static elevator input for analysis
 – Zero throttle and trim other surfaces for straight and level flight
 – View the equilibria (no transients) for each state as a function of the elevator position
 – Augment with time domain analysis (transients)
LTA: Improving safety

two stable branches corresponding to LH and RH spin modes

zero elevator corresponds to equilibrium around alpha=5 deg
LTA: Improving safety
LTA: Improving safety

• Step 1: Aero & Rate Recovery Result
 – High-fidelity non-linear model
 – State-of-the-art bifurcation analysis
 – Confirm a simple solution: Zero elevator!
 – Simple is good!
• Step 2: Attitude Recovery
 – Use protected FBW control to level pitch and roll
• Step 3: Recover Over-speed and Altitude
 – Use protected FBW to climb to altitude
LTA: Improving safety

- Test / Validate

Aircraft is recovered within 600ft of altitude after AREF activation
LTA: Improving safety

- Normal flight
- Elevator-Induced Stall and Spin
- Overspeed Recovery
- Post Recovery

Graph showing time [sec] vs. alpha [deg] and beta [deg].

Aerodynamic Recovery
Attitude Recovery
LTA: Improving safety

- Test / Validate
 - Post-stall spin is induced at 8 000ft using elevator
 - Aircraft is recovered within 600ft altitude of AREF activation
 - Structural load limits are not exceeded in any part of the simulation
 - The solution is simple and relies on existing FBW flight protection systems for final stages of recovery
 - Result: Post-stall recovery validation on GTM, but this is just the tip of the iceberg
LTA: Improving safety
LTA: Improving efficiency

- Improving efficiency
 - Using less fuel
 - Using that fuel wisely (Greener)
- Example: Automated Formation Flight
 - 66% Increase in airliner traffic up to 2033
 - Formation flight (more lift/less drag)
 - Up to 40% reduction in fuel consumption
 - Exploit persistent cruise wakes
 - At least 10x wingspan separation behind
 - Same vertical level
 - Primarily control lateral separation
LTA: Improving efficiency

• Goals
 – Autonomous Formation Flight
 – Probably 2 to 3 aircraft
 – Focus on dynamics and control
 – Calculate real fuel savings
 – Practical: Affordable, Safe & Comfortable

• Approach
 – Model & Understand ➙ Quite mature
 – Create algorithms / strategy ➙ Initial results
 – Test / Validate ➙ Initial results
LTA: Improving efficiency

- Model
 - Literature primarily for smaller trailing aircraft
 - UCT Study
 - Use Boeing 747 because of available data
 - Trailing vortex model behind leader
 - Convert flow field to complete $C_{\text{new}} = C_{\text{old}} + C_{\Delta \text{t}}$ lookup / polynomials
LTA: Improving efficiency

- Relative placement

- Dominant effects of lateral separation
 - Reduced drag
 - Roll moment
- Watch trim / actuation limits!
LTA: Improving efficiency

- Relative placement (Trim perspective)
LTA: Improving efficiency

- Relative placement (Dynamics perspective)

(a) Lateral sandwich region locus

(b) Lateral outer region locus

(c) Vertical sandwich region locus

(d) Vertical outer region locus
LTA: Improving efficiency

- Relative placement
 - Sandwich region
 - Best drag reduction (15%)
 - Smaller space
 - More variation in dynamics
 - Stuck between trim limits
 - More turbulent / reduced comfort
 - Model accuracy may be questioned
 - Outer region
 - Significant drag reduction (10% to 15%)
 - Larger space
 - More forgiving dynamics changes
 - Easy approach / exit
 - Less turbulence
LTA: Improving efficiency

- Control and Simulation

```
Conventional Controller

Aircraft State Communication

Formation Flight State Machine Control
  Conventional Controller
  Extremum Seeking Controller
  Formation-Hold Controller

Leader Aircraft
  Aerodynamic Model
  Gravitational Model
  Higher Order Thrust Model

Follower Aircraft
  Aerodynamic Model
  Wake Aerodynamic Model
  Gravitational Model
  Higher Order Thrust Model

6 Degrees of Freedom Model
```
LTA: Improving efficiency

- Extremum seeking control
LTA: Improving efficiency
Conclusions

• Industry
 – Complicated problems
 – Much insight into practical issues
 – Many unique constraints to consider

• Academia
 – Access to powerful tools & support networks
 – Time and a need to solve difficult problems

• Mutually beneficial collaboration is possible
 – Champions and support (Airbus & dti / NAC)
Special Thanks

Airbus:
Daniel Cazy
Etienne Coetzee
Emmanuel Cortet
Michel Goulain
David Hills
Dale King

NAC:
Philip Haupt

Stellenbosch University:
Japie Engelbrecht
Thomas Jones
Corne van Daalen

University of Cape Town:
Chris Redelinghuys
More information

- Cell phone friendly website
 - ee.sun.ac.za
- Facebook page
 - goo.gl/njFIP
- Contact us!
 - HOD – Prof Thomas Jones
 - +27-21-808-4319
 - jones@sun.ac.za